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Cray, Supercomputing and Data Science

● Cray: a supercomputing pioneer since 1976
● Supercomputing is changing

● Increasingly seeing need for data science in scientific 
computing and other traditional HPC environments
● Scientific use of AI
● Training at large scale

● Collaborating with NERSC BDC, Intel, and other 
partners to understand landscape and develop 
solutions

● Current efforts
● Urika-GX analytics platform
● Urika-XC and Urika-CS software stack
● The Cray PE ML Plugin
● Alchemist

● Where we are headed
● End-to-end workflows
● The convergence of AI and Simulation
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Scaling Deep Learning



What is Deep Learning: A Specific Example

● An organic gardener is building a robot in his garage to recognize the 
10 insects found in his garden, and decide which ones to kill with a 
laser

● The robot will have a camera, and will capture JPEG files of the 
insects

● The robot needs a ‘program’ to classify each JPEG according to 
which of the 10 kinds of insect was photographed

JPEG ‘Program’

“That’s a 

Japanese 

beetle”!
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Inputs & Outputs

● Our input is a JPEG
● 224x224 pixels, 3 colors à a 224x224x3 

element vector of the pixel values
● Our output is a classification

● One of 10 categories à a 10 element 
vector with a “1” in the position representing 
the category to which the image belongs

How many “IF” statements will we 
need to figure out that a bunch of 
pixel values is a Japanese beetle?
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This is an Artificial Intelligence Problem

● If you can’t get the output from the input with a bunch 
of loops and conditionals, it’s AI

● But, if that won’t work, how can we do it?

● Hint #1: Any mapping of inputs to outputs is a function
● Hint #2: A function can be approximated using a (good) 

approximating function
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An Approximating Function

● How can we determine a good approximating function?
● Choose its form (linear, polynomial, …)
● Minimize the overall error at a finite number of inputs with known 

outputs  - - fit the curve
● We have to find the values of the free parameters of the function that 

minimize the error – it doesn’t matter how we do it

Fitting the curve is a lot like training the function 
to know the answer for arbitrary inputs
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Training via Gradient Descent
● We want to approximate y=f(x)

● Find a function that maps a set of 
inputs to a set of outputs, to some 
level of accuracy

● We know yi=f(xi), for i=1,N
● Iterate:

● First iteration only: initialize the free 
parameters of f

● Calculate error (over N known points)
● Calculate gradient of error, as a 

function of the free parameters of f
● Adjust the free parameters of  f a 

‘small’ distance in the direction of 
negative of error gradient

● Assess convergence & stop when 
‘good enough’
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A Really Useful Kind of Function
● This image shows a 

deep neural network
● An approximating 

function, with free 
parameters called 
weights and biases

● Deep networks have 
been found to be 
especially powerful

● Neural networks can 
approximate any 
continuous function 
arbitrarily wellX

f(X)
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HPC Attributes of Deep Learning

● Today we’ll hear examples of a number of deep learning 
applications that require HPC-scale resources to train
● Cosmology

● Climate

● Life Sciences

● DL training is a classic high-performance computing problem 
which demands:
● Large compute capacity in terms of FLOPs, memory capacity and bandwidth

● A performant interconnect for fast communication of gradients and model 

parameters in order to scale up

● Parallel I/O and storage with sufficient bandwidth to keep the compute fed at 

scale

Big Data Summit 2018
12

Copyright 2018 Cray, Inc.



Parallelization Techniques 

● Data Parallelism
● Divides global mini-batch among processes

● Two methods for this:

● Synchronous: single model (possibly replicated across all processes) updated with 
globally averaged gradients every iteration

● Asynchronous: processes provide gradients every iteration but are allowed to fall out 
of sync from one another.  Processes each have their own model that may or may 
not be the same as any other process

● Model Parallelism
● Single model with layers decomposed across processes

● Activations communicated between processes

● Synchronous data parallel approach is most common, today…
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Data Parallelism - Collective-based Synchronous SGD

● Data parallel training divides a global mini-batch of examples across processes
● Each process computes gradients from their local mini-batch
● Average gradients across processes
● All processes update their local model with averaged gradients (all processes have the 

same model)

● Not shown is the I/O activity of reading training samples (and possible augmentation)

Compute 
intensive

Communication 
intensive

Typically not 
much compute

Big Data Summit 2018
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Distributed TensorFlow

● TensorFlow’s native method for 
parallelism uses ClusterSpec API and 
gRPC layer

● Can be difficult to use and optimize.  
User must specify:
● hostnames and ports for all worker  and 

parameter server processes

● # of workers

● # of parameter server processes

● Chief process of workers

● Number of parameter servers (PS) 
processes to use is not clear
● Too few PS results in many-to-few 

communication pattern (very bad) and 
stalls delivering updated parameters

● Too many PS results in many-to-many 
communication pattern (also bad)

● Users typically have to pick a scale 
and experiment for best performance

Big Data Summit 2018
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Distributed TensorFlow Scaling on Cray XC40 - KNL
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Scalable Synchronous Data Parallelism

● The performance and usability issues with distributed TensorFlow can be addressed 
by adopting an MPI communication model

● Resources dedicated to gradient calculation
● An MPI collective based approach would eliminate the need for PS processes and 

likely be optimized without intervention from the user
● TensorFlow does have an MPI option, but it only replaces gRPC point to point 

operations with MPI
● Collective algorithm optimization in MPI not used
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Cray Programming Environment Machine Learning 
Plugin (CPE ML Plugin)
● DL communication plugin with Python and C APIs

● Optimized for TensorFlow but also portable to other 
frameworks (testing with PyTorch now)
● Callable from C/C++ source

● Called from Python if data stored in NumPy arrays or 
Tensors

● Does not require modification to TensorFlow source
● User modifies training script

● Uses custom allreduce specifically optimized for DL 
workloads
● Optimized for Cray Aries interconnect and IB for Cray 

clusters

● Tunable through API and environment variables
● Supports multiple gradient aggregations at once 

with thread teams
● Useful for Generative Adversarial Networks (GAN), for 

example

● Another alternative is Horovod from Uber

Big Data Summit 2018
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Alchemist
An Apache Spark ó MPI Interface

A collaboration of Cray (Kristyn Maschhoff and Michael Ringenburg) 
and the UC Berkeley RiseLab (Alex Gittens, Kai Rothauge, Michael W. Mahoney, Shusen

Wang, and Jey Kottalam)

Slides courtesy Kai Rothauge



MPI vs Spark
• Cray, NERSC,  and AMPLab performed case study for numerical linear algebra on 

Spark vs. MPI

• Why do linear algebra in Spark?

• Pros: 
• Faster development, easier reuse
• One abstract uniform interface (RDD)
• An entire ecosystem that can be used before and after the NLA computations
• Spark can take advantage of available local linear algebra codes
• Automatic fault-tolerance, out-of-core support

• Con:
• Classical MPI-based linear algebra implementations will be faster and more efficient

Slides courtesy Kai Rothauge, UC Berkeley



Rank 20 PCA of 2.2TB oceanic data
MPI vs Spark

A. Gittens et al. “Matrix factorizations at scale: A comparison 

of scientific data analytics in Spark and C+MPI using three 

case studies”, 2016 IEEE International Conference on Big Data 

(Big Data), pages 204–213, Dec 2016.

• Performed a case study for 
numerical linear algebra on 
Spark vs. MPI:
• Matrix factorizations 

considered include Principal 
Component Analysis (PCA)

• Data sets include
• Oceanic data: 2.2 TB
• Atmospheric data: 

16 TB
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MPI vs Spark: Lessons learned

• With favorable data (tall and skinny) and well-adapted algorithms, linear 

algebra in Spark is 2x-26x slower than MPI when I/O is included

• Spark’s overheads are orders of magnitude higher than the actual 

computations

• Overheads include time until stage end, scheduler delay, task start delay, executor 

deserialize time, inefficiencies related to running code via JVM

• The gaps in performance suggest it may be better to interface with 

MPI-based codes from Spark

Slides courtesy Kai Rothauge, UC Berkeley



Alchemist

• Interface between Apache Spark and existing MPI-based libraries for NLA, 
ML, etc.

• Design goals include making the system easy to use, efficient, and scalable
• Two main tasks:

• Send distributed input matrices from Spark to MPI-based libraries 
(Spark => MPI)

• Send distributed output matrices back to Spark (Spark <= MPI)
• Minimize overhead when transferring data between Spark and library

Slides courtesy Kai Rothauge, UC Berkeley



Truncated SVD Alchemist vs Pure Spark
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Alchemist Pure Spark

• Use Alchemist and MLlib to get 

rank 20 truncated SVD

• Setup:

• 30 KNL nodes, 96GB DDR4, 

16GB MCDRAM

• Spark: 22 nodes; Alchemist: 8 

nodes

• A: m-by-10K, where m = 5M, 

2.5M, 1.25M, 625K, 312.5K

• Ran jobs for at most 60 minutes 

(3600 s)

• Alchemist times include data 

transfer
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Future Work
• Support for additional MPI-based libraries

• And make it easier to add new ones
• Enable running on AWS EC2
• Ray + Alchemist?
• More info:

• CUG 2018: “Alchemist: An Apache Spark <=> MPI Interface”, Alex Gittens, Kai Rothauge, 
Shusen Wang, Michael W. Mahoney, Jey Kottalam, Lisa Gerhardt, Prabhat, Michael 
Ringenburg, Kristyn Maschhoff, https://arxiv.org/abs/1806.01270

• KDD 2018 (upcoming): “Accelerating Large-Scale Data Analysis by Offloading to High-
Performance Computing Libraries using Alchemist”, Alex Gittens, Kai Rothauge, Shusen
Wang, Michael W. Mahoney, Lisa Gerhardt, Prabhat, Jey Kottalam, Michael Ringenburg, Kristyn 
Maschhoff, https://arxiv.org/abs/1805.11800

Try it out at github.com/alexgittens/alchemist

Slides courtesy Kai Rothauge, UC Berkeley
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The Future?
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End-to-End Data Science Workflows
● Data science workflows are far more 

complex than just training and queries 
● Data preparation
● Feature selection
● (Hyper-) parameter tuning
● Model ensembles
● Model rationale/interpretability and 

unlearning

● Discovering the right workflow more 
costly than even the largest ML 
training
● ML engineer’s 80/20 rule
● Often iterative/exploratory – requires 

interactivity/near-real time exploration
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Native Lib
Python

Native Lib
Python

Native Lib
Python

Native Lib
Python

A Vision for Data Science Workflows

● Complete, integrated, intelligent framework for data science workflows
● Modularity and extensibility: Defined, open APIs
● Ease-of-use: Framework handles back end job and data management
● Intelligence: Intelligent workflow search strategies
● Interactive speed: Leverage parallel I/O, interconnect, and compute to allow interactive speed exploration
● Portability: Run on laptop or supercomputer
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Convergence of AI, Analytics, and Simulation

● How can AI help simulation, and 
how can simulation help AI?
● Trained models to replace expensive 

computations with “good enough” 
approximations

● Training models on simulated results
● Machine learning to choose optimal 

simulation parameters (“tuning knobs”)
● Leverage full capabilities of 

hardware
● Increase utilization
● Reduce data movement
● Simplify workflows
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Legal Disclaimer
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Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is 
granted by this document. 

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. 

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published 
specifications. Current characterized errata are available on request. 

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third 
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at 
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. 
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. 

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and 
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT, 
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are 
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the 
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their 
respective owners.
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Questions?
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